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of QC executions limits this approach to small programs. Finally,

even when limited simulations are tractable, it can be difficult to

interpret the simulation results.

While the problem of debugging and validating quantum pro-

grams has been extensively identified as a major barrier to useful

quantum computation [4, 9, 13, 34, 39, 44, 49], little has been said

about what actually constitutes a quantum program bug. Similarly

limited detail has been shared about the inside story of translat-

ing QC algorithms in to working QC programs, even though the

field is now making rapid progress in writing open source QC

program benchmarks across several quantum programming lan-

guages [9, 17, 23, 27, 47, 48].

This work shares the detailed process of debugging quantum

programs, with the help of a proposed set of quantum program

assertions and breakpoints based on statistical tests. Using ensem-

bles of classical observations taken from the intermediate state of

quantum programs, these statistical tests are able to decide if the

program state belongs to one of three important classes of quantum

states: classical, superposition, and entangled. With this informa-

tion, programmers can determine if the execution of the quantum

program is valid up to each breakpoint. If the program state is

invalid, the assertions guide the programmer in finding the bug

inside subroutines and in program code up to that point.

For three quantum program benchmarks in factoring integers,

database search, and quantum chemistry, we describe what kinds of

bugs occurred in the process of bringing up the programs from unit

tests to integration testing. We categorize the bugs according to

where in the structure of quantum programs they may arise, and we

lay out a strategy for placing statistical assertions that effectively

catches them.

The rest of this paper is organized as follows: Section 2 provides

relevant background for quantum programs and debugging. Sec-

tion 3 details our statistical assertions and simulation framework for

debugging quantum programs, which is then used in Section 4 for

building and debugging an integer factorization quantum program.

Section 5 evaluates the use of the assertions in two additional case

studies. Section 6 discusses related approaches to writing correct

quantum programs.

2 BACKGROUND ON QUANTUM STATES
AND QUANTUM PROGRAMS

First, we review the principles of quantum computing [18, 28, 29,

35], in order to understand how debugging quantum programs is

different from and more challenging than classical debugging.

2.1 Qubits, superpositions, and entanglement

The basic unit of information in QC is the qubit, which can take

on values of |0⟩ and |1⟩ like bits in classical computing, but unlike

classical bits, qubits can also be in a probabilistic superposition

between the two values. Quantum computers can also measure

the value of a qubit, forcing it to collapse out of superposition

into a classical value such as ‘0’ or ‘1’. Measurement disturbs the

values of variables in a quantum computer. So unlike the case in

classical computing, programmers cannot easily pause execution

and observe the values of qubits as a quantum program runs. As

a result of this limited visibility into program state, programmers

must carefully choose what to measure and test when they debug

quantum programs.

Aside from qubits being in superposition states, the other feature

of data in QC is entanglement. For example, when the states of two

qubits are entangled, the combined state of the two-qubit system

must be viewed as a superposition of a larger set of elementary

states |00⟩, |01⟩, |10⟩, and |11⟩. An entangled state cannot be fac-

tored into independent pieces of information, and can no longer be

viewed as a simple concatenation of two qubits. Likewise, a three-

qubit system has potential superpositions of eight states, and so on.

For this reason, as more qubits come into play in a quantum com-

puter, the number of states that data can be in grows exponentially.

This exponential growth of possible values due to superpositions

and entanglement underlies the power of QC.

On the flip side, the huge state spaces involved in QC limits pro-

grammers’ ability to use classical computers to simulate and debug

QC programs. Naïve simulation of a 50-qubit quantum computer,

for example, needs 250 or roughly one quadrillion floating point

numbers just to store the program state at any instant [11]. While

more advanced techniques can decrease the memory requirement

for simulating circuits [25, 30, 52, 55, 58], interactive programming

and simulating quantum programs on a workstation is still lim-

ited to 20 to 30 qubits. For this reason, testing and debugging QC

programs in simulation is only possible for toy-sized programs.

2.2 Quantum computer operations,
programs, and a taxonomy for bugs

The process of quantum computing involves applying operations on

qubits. Quantum computer scientists use diagrams such as Figure 1

to represent sequences of quantum operations. Looking at Figure 1

one sees that quantum programs consist of three conceptual parts:

(1) Inputs to quantum algorithms include quantum initial val-

ues for qubits and classical input parameters such as coeffi-

cients for rotations. Getting these inputs to be correct is the

focus of Section 4.1.

(2) Operations include the specification of how to create an

entangled state shown in Figure 1. Getting these basic oper-

ations to be correct is the focus of Section 4.2. Additionally,

operations can be further composed according to patterns

such as iteration, recursion, and mirroring. The correctness

of these code patterns is the focus of Sections 4.3, 4.4, and 4.5.

(3) Outputs of quantum algorithms are the final classical mea-

surement values of qubits such asm0 andm1. Furthermore,

any temporary variables used in the course of a program

have to be safely disentangled from the rest of the quantum

state and discarded. Getting these final results to be correct

is the focus of Section 4.6.

Bugs in quantum programs can crop up in any of these three

parts of a QC program due to mistakes in converting algorithm

specifications to program code. We will give examples of bugs in

each of these places using detailed case studies of real quantum

programs. To our knowledge, our work is the first study of such

QC program patterns and anti-patterns [15].
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Figure 2: Roadmap for implementing and debugging Shor’s algorithm.

3 OUR APPROACH TO STATISTICAL
QUANTUM PROGRAM ASSERTIONS

Even though it is hard to have as much visibility into quantum

program state as is the case in classical computing, limited but useful

assertions checking is possible, particularly for the purposes of

writing correct quantum programs. In this paper, we propose using

statistical tests on measured outputs as a way to gain visibility into

a quantum program (Section 3.1). We implement several quantum

programs in a quantum programming language (Section 3.2). Using

our łquantum breakpoints,ž programmers are able to check for

expected values at various points in simulated quantum program

runs, allowing them to debug the programs with the aid of our

statistical assertions (Section 3.3).

3.1 Quantum assertions using statistical tests

In this subsection, we preview three basic types of assertions useful

in quantum debugging, and we discuss the mechanics of using

statistical tests as quantum assertions.

Following our overview of quantum states, superpositions, and

entanglement in Section 2, one already sees that there are three

kinds of possible assertions in a quantum program:

(1) Classical assertions: a quantum variable should take on a

deterministic (classical) integer value upon measurement;

(2) Superposition assertions: a quantum variable in superpo-

sition should take on a probabilistic distribution of multiple

values upon measurement;

(3) Entanglement assertions: two or more quantum variables

in an entangled state should take on associated (correlated)1

values once they are measured.

Statistical tests use ensembles of multiple measurements to de-

cide to reject hypotheses. These serve as quantum programming

assertions. With enough measurements, a statistical test is able to

tell that an assertion does not hold, indicating a bug in the program.

1Correlation is dependence between variables whose magnitude does matter. That
compares with association which is dependence between nominal variables that are
merely categories, and whose magnitude don’t matter.

Otherwise, if the assertion holds, programmers can proceed cau-

tiously knowing the quantum state so far is consistent with łno bug,ž

given the number of measurements provided to the statistical test.

While this approach is not powerful enough to decisively conclude

that a quantum program state is correct, the debugging experience

we share in this paper shows that detecting incorrect states is still

useful enough to catch program bugs.

Specifically, our tool uses the chi-square test to check for clas-

sical and superposition quantum states, and it uses contingency

table analysis coupled with the chi-square test to check for entan-

gled states [42]. The assertions on classical and superposition quan-

tum states are useful for quantum algorithm precondition checks

and for unit testing, discussed in Sections 4.1, 4.2, 4.3, and 4.6. Sim-

ilarly, the assertions on entangled states are useful for checking

interaction between qubits, discussed in Sections 4.4 and 4.5.

3.2 Benchmark QC algorithms for debugging

To demonstrate using our assertions framework to debug quantum

programs, we focus this paper on debugging three programs in

factoring integers, database search, and quantum chemistry, each

representing a different class of quantum algorithms.

Using the Shor’s integer factoring quantum algorithm for factor-

ing integers as a centerpiece example throughout Section 4, we

show how the structure of quantum programs guides programmers

where to put useful quantum assertions. We propose a complete

taxonomy of where bugs can take place, and show assertions can

catch all of the categories of bugs.

Then, using the Grover’s database search and a quantum chem-

istry problem as additional case studies in Section 5, we discuss

how different classes of quantum algorithms present different op-

portunities and challenges for debugging.

3.3 Simulation and assertions checking
methodology

We implement the programs in the Scaffold quantum programming

language developed by our research group [17],2 now augmented

2https://github.com/epiqc/ScaffCC
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Table 1: Correct and incorrect code for rotation decomposition. Using the Scaffold language [17] as an example, we code out

Figure 3’s controlled operation U, where U is a rotation in just one axis. Because only one axis is needed, we can drop either

operation A or C, paying attention to the sign on the angles. Reordering the lines of code or signs results in a rotation in the

wrong direction.

Correct, operation A unneeded Correct, operation C unneeded Incorrect, angles flipped

Rz(q1,+angle/2); // C CNOT(q0,q1); Rz(q1,-angle/2);

CNOT(q0,q1); Rz(q1,-angle/2); // B CNOT(q0,q1);

Rz(q1,-angle/2); // B CNOT(q0,q1); Rz(q1,+angle/2);

CNOT(q0,q1); Rz(q1,+angle/2); // A CNOT(q0,q1);

Rz(q0,+angle/2); // D Rz(q0,+angle/2); // D Rz(q0,+angle/2); // D

with the ability to specify and check for assertions. The assertions

instruct the compiler where to stop execution and measure qubit

states. Since premature measurement destroys the quantum state,

the assertions effectively terminate the quantum program, splitting

the quantum program into multiple breakpoints.

Our tool uses the ScaffCC compiler to compile Scaffold code with

assertions into multiple versions of OpenQASM, a QC assembly

language [6]. Each version of the compiled program has the pro-

gram execution up to the quantum breakpoint, followed by an early

measurement and assertions on expected values for the quantum

variables.

Then, our tool simulates an ensemble of executions for each of

the programs ending at each breakpoint, using the QX quantum

simulator [19] running on a cluster compute infrastructure.

Finally, the tool gathers the results from the simulations to check

for the assertions at each breakpoint. The measurement results feed

into statistical tests, which check if the quantum variables have val-

ues that are consistent with being in one of classical, superposition,

or entangled states. If the statistical tests reject the null hypotheses,

that indicates the assertions were violated, which means there is a

bug in the quantum program or that the assertion was an incorrect

constraint.

Given the rapid growth of QC infrastructure, programmers now

have the chance to test a variety of quantum algorithms written in

many languages [23]. To validate our overall approach, we cross-

validated our quantum programs and simulation results against

equivalent programs written in other quantum programming lan-

guages, such as LIQUi|> [44], ProjectQ [12, 47], and Q# [48].

From this detailed debugging experience spanning multiple al-

gorithms, languages, and simulators, we are able to concretely

describe for the first time what types of bugs may crop up in quan-

tum programs, and how assertions can aid in the debugging of

quantum programs. As an added contribution, Section 5 discusses

how language features of different QC programming languages can

aid with the placement of quantum assertions, or otherwise prevent

bugs in the first place.

4 QC DEBUGGING AND ASSERTIONS:
SHOR’S ALGORITHM CASE STUDY

Using the Shor’s quantum algorithm for factoring integers as a

concrete case study, we show how the structure of the quantum

program shown in Figure 2 aids programmers in using assertions

to debug quantum programs. To defend against bugs in quantum

U

q0

q1 C

q0

q1 B A

D
=

Figure 3: Decomposition of a simple QC program. Time

flows left to right, showing sequences of operations applied

to qubits q0 and q1. The left symbol is a controlled arbitrary

operation U . Whether the operation U applies to the target

qubit q1 is dependent on the value of the control qubit q0.

The diagram on the right shows the decomposition into the

equivalent sequence of more basic operations. The basic op-

erations include single-qubit rotations A through D that al-

ter the probability distribution of qubit values. The opera-

tions also include two two-qubit controlled-NOT operations

that flip the target qubit (denoted ⊕) contingent on the value

of the control qubit (denoted •) [35].

program input, operations, and outputs, programmers can write

assertions that check for preconditions, invariants, and postcon-

ditions. These constraints aid in the process of bringing up the

program from unit tests to overall integration tests.

Shor’s factorization algorithm uses a quantum computer to factor

a composite number in polynomial time complexity, providing expo-

nential speedup relative to the best known classical algorithms [46].

The algorithm works by estimating eigenvalues of a matrix, where

the matrix is generated from the exponentiation of an integer repre-

senting a trial factor. The arithmetic is done in modular space with

the modulus N set to be the integer one wants to factor. Here, we

replicate results for factoring N = 15, the simplest example [21] [35,

p. 235], by following an example for an implementation that mini-

mizes the qubit cost [2]. Once the quantum part of Shor’s algorithm

is done finding the eigenvalues, those values are useful in a classical

post-processing algorithm to find 3 and 5, the factors of 15.

We focus on debugging the Shor’s factoring algorithm because it

features in a single overall algorithm several important primitives

(kernels) and program patterns common to many quantum algo-

rithms. The primitives invoked in Shor’s algorithm include order

finding, eigenvalue estimation, state preparation, phase estimation,
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and quantum Fourier transform. Our assertions and debugging tech-

niques apply to several other QC applications that invoke similar

primitives and patterns.

4.1 Classical and superposition precondition
assertions on quantum initial values

Correct implementation and execution of QC programs begins with

the right input states. Given their importance, it is worthwhile

to check these preconditions by running or simulating programs

up to the entry point of subroutines, and performing a premature

measurement to check for these anticipated states.

Bug type 1: Incorrect quantum initial values. The type of

quantum initial state that an algorithm needs depends on the type

of algorithm. For eigenvalue estimation algorithms such as Shor’s

algorithm, the two major pieces of quantum data are an upper reg-

ister and a lower register (far left of Figure 2): the upper register

participates in a phase estimation subroutine; while the lower reg-

ister is scratch space to implement a mathematical function such

as modular exponentiation.

Here, the lower target register needs to be initialized to a strictly

classical integer value, such as ‘1’. That means that if a quantum

computer measured the qubit encoding the least significant bit of

the quantum variable, it should return ‘1’, while the measurements

on the other qubits of the variable should return ‘0’.

On the other hand, the upper control register needs to be initial-

ized to a uniform superposition of values. More concretely, if the

upper register consists of, for example, 3 qubits, the measurement of

the upper register at the beginning of the algorithm should return

the eight values ‘000’, ‘001’, ... ‘111’ with equal probability. That

uniform superposition of values is created by the quantum Fourier

transform (QFT). The QFT operation has the effect of taking integer

inputs, and re-encoding them as quantum values that are distinct

from each other by a quantum property known as phase.

The classical value in the upper register and uniform superposi-

tion in the lower register are the preconditions for Shor’s algorithm.

Other types of preconditions are possible for other types of algo-

rithms. For example, quantum communications protocols often

need entangled states as initial conditions.

Defense type 1: Assertion checks for classical and super-

position preconditions. Our tool checks for both classical and

superposition states using chi-square statistical tests on measured

values.

To test for classical integer values, our tool gives the chi-square

test the hypothesis that the distribution is unimodal with a peak at

the expected value. If the test returns a small p-value (≤ 0.05), then

the null hypothesis is rejected, meaning the initial state cannot be

the expected value, indicating a violation of the precondition. If, on

the other hand, the test returns a large p-value, typically close to

1.0, then the input state is consistent with being the expected value,

though programmers cannot completely rule out a precondition

violation. If there actually was a bug, programmers would only be

able to detect the precondition violation using more measurements.

To test for superposition quantum states of n-qubits, the chi-

square test uses as its hypothesis that the measurements should be

1 #include "QFT.scaffold"

2 #define width 4 // number of qubits

3 int main () {

4

5 // initialize quantum variable to 5

6 qbit reg[width];

7 for ( int i=0; i<width; i++ ) {

8 PrepZ ( reg[i], (i+1)%2 ); // 0b0101

9 }

10

11 // precondition for QFT:

12 assert_classical ( reg , width , 5 );

13

14 QFT ( width , reg );

15

16 // postcondition for QFT &

17 // precondition for iQFT:

18 assert_superposition ( reg , width );

19

20 iQFT ( width , reg );

21

22 // postcondition for iQFT:

23 assert_classical ( reg , width , 5 );

24 }

Listing 1: Test harness for quantum Fourier transform.

a uniform distribution across all 2n integer values. If the superposi-

tion precondition is violated, and there are sufficient measurements,

the values would be concentrated enough for the chi-square test to

reject the null hypothesis and raise an exception.

In prior work, the Q# quantum programming language has sup-

port for assertion checks for integer values, and is able to check for

such assertions in simulations of quantum programs [48]. To our

knowledge, this paper is the first proposal for quantum assertions

on superposition and (later in this paper) entangled quantum states.

Furthermore, this is the first work to discuss using statistical tests

to check for these hypotheses.

4.2 Unit tests for a library of subroutines

Now that we havemade sure the quantum initial states are valid, the

next step in programming the Shor’s algorithm is to build up the al-

gorithm operations. We do so starting from elementary operations,

which we exhaustively validate against their closed form solutions,

and against implementations in other languages. Then we compose

the elementary operations following code patternsÐiterations, re-

cursion, and mirroringÐand test the composite subroutines using

assertions (Sections 4.3, 4.4, 4.5).

Bug type 2: Incorrect operations and transformations. In

order to correctly implement Shor’s algorithm, programmers first

have to build up the quantum subroutines such as the controlled

rotation subroutine depicted in Figure 3. This subroutine is the

building block for QFT and adder routines in Shor’s algorithm

(modules in Figure 2). Typically this task consists of translating

quantum circuit diagrams, such as Figure 3, into quantum program
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1 // outputs b <= a+b, where a is a `width ' bit constant integer

2 // b is an integer encoded on `width ' qubits in Fourier space

3 module cADD (

4 const unsigned int c_width , // number of control qubits

5 qbit ctrl0 , qbit ctrl1 , // control qubits

6 const unsigned int width , const unsigned int a, qbit b[]

7 ) {

8 for ( int b_indx=width -1; b_indx >=0; b_indx -- ) {

9 for ( int a_indx=b_indx; a_indx >=0; a_indx -- ) {

10 if ( (a>>a_indx) & 1 ) { // shift out bits in constant a

11 double angle = M_PI / pow ( 2, b_indx -a_indx ); // rotation angle

12 switch (c_width) {

13 case 0: Rz ( b[b_indx], angle ); break;

14 case 1: cRz ( ctrl0 , b[b_indx], angle ); break;

15 case 2: ccRz ( ctrl0 , ctrl1 , b[b_indx], angle ); break;

16 }}}}}

Listing 2: Controlled adder subroutine using QFT.

1 #include "cADD.scaffold" // see Listing 2

2 #define width 5 // number of qubits

3 int main () {

4 // control qubits unimportant here

5 qbit ctrl [2];

6 PrepZ ( ctrl[0], 0 );

7 PrepZ ( ctrl[1], 0 );

8

9 // initialize quantum variable to 12

10 const unsigned int b_val = 12;

11 qbit b[width ];

12 for ( int i=0; i<width; i++ ) {

13 PrepZ ( b[i], (b_val >>i)&1 );

14 }

15 assert_classical( b, width , 12 );

16

17 // perform the addition

18 QFT ( width , b );

19 const unsigned int a = 13;

20 cADD (0,ctrl[0],ctrl[1],width ,a,b);

21 iQFT ( width , b );

22

23 // assert a+b = 12+13 = 25

24 assert_classical ( b, width , 25 );

25 }

Listing 3: Test harness for controlled adder subroutine.

code. Sometimes, programmers do not even have quantum circuit

diagrams and must instead start with equation descriptions for the

operations they need. This process of converting specifications to

program code is unintuitive and tricky. For example, Table 1 lists

multiple ways to code the decomposition of the controlled rotation,

including a buggy one where a small mistake leads to the wrong

operation.

Defense type 2: Assertion checks for unit testing. An obvi-

ous defense against coding mistakes in basic subroutines (such as

controlled rotation, QFT, and addition subroutines) is to use a li-

brary of shared code. Doing so helps ensure program correctness by

allowing programmers to exhaustively validate small subroutines,

in order to bootstrap larger subroutines. Unit testing is especially

important in QC as running or simulating large quantum programs

is costly, making larger scale integration tests impossible.

As a concrete example, we use precondition and postcondition

assertion checks inside a test harness to validate the QFT subroutine,

another important building block. As shown in Listing 1, first the

program prepares a classical integer state (Lines 5-9). Then, the

program checks as a precondition of the QFT subroutine that the

input is a classical integer value, in this case ‘5’ (Line 12). The

corresponding postcondition of the QFT subroutine is that the

output should be a uniform superposition if the program collapses

the quantum state and measure the values at that point (Line 18).

While these simple constraints are not enough on their own to

validate that the QFT implementation and its sub-components are

correct, they are valuable lightweight sanity checks. For the QFT

subroutine, additional validation comes from cross checking its

outputs against closed form mathematical solutions, and against

implementations in other languages.

4.3 Numeric assertion checks for
composing gates with iterations

From the basic subroutines, programmers typically compose the

subroutines into quantum programs using patterns including it-

erations, recursion, and mirroring. Here we focus on iterations,

a pattern commonly invoked in code related to the QFT for the

purpose of manipulating qubits that represent numbers. Our tool

can catch bugs in iteration code using assertions on integer inputs

to and outputs from subroutines.

Bug type 3: Incorrect composition of operations using it-

eration. Now that we have validated code for the controlled ro-

tation and QFT subroutines, the next more complex subroutine is
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the controlled adder, which is itself a subroutine for the modular

exponentiation part of Shor’s algorithm (bottom module in Fig-

ure 2). Listing 2 shows the iteration code for the constant-value

adder, showing tricky places in Lines 8 through 11 where bugs

can crop up. These possible bugs include indexing errors in the

two-dimensional loop, bit shifting errors, endian confusion, and

mistakes in rotation angles.3

Defense type 3: Assertion checks for classical intermedi-

ate states. Our tool’s assertions on classical integer values allows

for unit testing of code that involve iterations. As an example in

Listing 3, programmers can write assertions on the inputs (Line 15)

and outputs (Line 24) of the controlled adder subroutine. With these

assertions programmers can catch coding mistakes made in its con-

stituent subroutines. For example the bug involving the incorrect

version of the rotation operation in Table 1 is caught here when

the output assertion returns p−value = 0.0, indicating the addition

did not work as expected, due to a bug inside the controlled adder.

4.4 Entanglement assertion checks for
composing gates with recursion

The next two types of bugs in quantum programs have to do with

two more ways to compose basic operations, both of which have to

do with the interaction between quantum variables; i.e., between

two or more sets of qubits. That is in contrast to the previous two

types of bugs in basic operations and iterating operations, which

generally act on single variables (where the variables may comprise

multiple qubits).

In quantum computing, the interaction between variables takes

place through entanglement. For example, in Figure 2, the upper

and lower registers interact when they are entangled through the

controlled modular exponentiation operation. If two variables are

entangled when a quantum computer measures them, the classical

values that they collapse to will be correlated. Using statistical tests

on the measurement results, programmers can write assertions to

check whether variables are entangled as expected.

Bug type 4: Incorrect composition of operations using re-

cursion. Entanglement is achieved using controlled operations,

which is a common pattern in quantum programs that involves

performing operations (e.g., modular multiply), contingent on a set

of qubits known as control qubits. These controlled operations cor-

respond to using recursion to compose basic operations. A multiply-

controlled rotation, for example, is just a controlled rotation that is

itself controlled by other qubits (Figure 4).

The process of coding recursive operation patterns may intro-

duce bugs. That is because quantum algorithms often need varying

numbers of control qubits in different parts of the algorithm, leading

to replicated code from multiple versions of the same subroutine

differing only by the number of control qubits. An example appears

in Listing 2, where the addition operation is contingent on control

3One of the trickiest aspects of quantum programming is properly keeping track of
how quantum variables map to qubit assignments. One way to prevent bugs altogether
in this kind of code is to introduce QC data types for numbers, providing greater
abstraction than working with raw qubits. For example, ProjectQ has quantum integer
data types [47], while Q# [48] and Quipper [9, 51] offer both big endian and little
endian versions of subroutines involving iterations. These QC data types permit useful
operators (e.g., checking for equality) that help with debugging and writing assertions.

1 #include "cMODMUL.scaffold"

2 #define width 5 // number of qubits

3 #define N 15 // number to factor

4

5 // CALCULATE: b <= a*x+b mod N

6 int main () {

7

8 // control qubit in superposition

9 qbit ctrl [1];

10 PrepZ ( ctrl[0], 1 );

11 H ( ctrl [0] );

12

13 // initialize x variable to 6

14 const unsigned int x_val = 6;

15 qbit x[width ];

16 for ( int i=0; i<width; i++ ) {

17 PrepZ ( x[i], (x_val >>i)&1 );

18 }

19 assert_classical ( x, width , 6 );

20

21 // initialize b variable to 7

22 const unsigned int b_val = 7;

23 qbit b[width ];

24 for ( int i=0; i<width; i++ ) {

25 PrepZ ( b[i], (b_val >>i)&1 );

26 }

27 assert_classical ( b, width , 7 );

28

29 // ancillary qubits unimportant here

30 qbit ancilla [1];

31 PrepZ ( ancilla [0], 0 );

32

33 // perform modular multiplication

34 const unsigned int a = 7;

35 cMODMUL ( ctrl[0], width , a, x, b, N,

ancilla [0] );

36

37 assert_entangled( ctrl ,1, b,width );

38

39 // inverse modular multiplication

40 const unsigned int a_inv = 13;

41 cMODMUL ( ctrl[0], width , a_inv , x, b, N,

ancilla [0] );

42

43 assert_product( ctrl ,1, b,width );

44 }

Listing 4: Test harness for the controlledmodularmultiplier

subroutine.

qubits taken as parameters in Lines 4 and 5. Depending on how

many control qubits are needed, the switch statement in Lines 12

through 15 applies the correct operation. The specific bug we are

going to demonstrate catching next is if a programmer made a mis-

take in Line 15, where they accidentally use ctrl1 twice instead of

ctrl0, causing a mistake in how the control qubits are routed.
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Figure 4: Controlled operationswithmultiple control qubits

result in recursive code patterns.

Defense type 4: Assertion checks for entangled interme-

diate states. Programmers can check for these types of bugs in

recursive code patterns for controlled operations using entangle-

ment assertions, a new kind of quantum assertion that we introduce

to test for dependence between measured values.

As a very simple example, we show how the entanglement as-

sertion check works on the simplest example of entangled states.

In the Bell state creation circuit we showed in Figure 1, the state

of the two qubits Q in location (D) of that diagram are in a Bell

state, a minimal example of an entangled state between qubits. The

measurement resultsm0 andm1 are maximally correlatedÐeither

both return ‘0’ or both return ‘1’. Using such observations one can

build a contingency table:

Probability
m0 measurement

0 1

m1 0 1/2 0

measurement 1 0 1/2

Next we again use a chi-square statistical test on the table to

determine a contingency coefficient. If the p-value is small (≤ 0.05),

as is the case for this table, then the test rejects the null hypothesis

and concludes the observations must be correlated, and therefore

the quantum variables were entangled when they were measured.

On the other hand, if the p-value fails to be significant, then the

observations are consistent with the variables being independent

and unentangled.

These entanglement assertions are powerful tools for catching

bugs such as our example bug of mistaken control qubits in the

controlled adder subroutine. Our tool catches the bug using en-

tanglement assertions in the controlled modular multiplier test

harness, shown in Listing 4. To prepare the contingency table, the

programmer only needs to identify pairs of quantum variables that

should be entangled with each other using the assert_entangled

statement (Line 37), which takes four parameters specifying the

control and target quantum variables and their bitwidths. Then, our

debugging tool keeps track of which qubits those specified variables

correspond to. The simulator then does an early measurement of

the qubits for both variables. The debugging tool then maps the

measurement results into columns and rows of a contingency table

automatically, and a chi-square test checks to make sure the control

qubits have an effect on whether the multiplier acts on the target

qubits.

If the controlled add operation is bug-free, with the control qubits

correctly routed, the first assertion returns p−value = 0.0005 for

an ensemble size of 16, indicating the control and target register

values are entangled at the point of the assertion. That means that

whichever way the control qubit collapses out of its superposition

Table 2: Correct classical input a and a−1 to Shor’s algorithm

for factoring 15, using 7 as a guess.

k , the algorithm iteration 0 1 2 3 . . .

a = 72
k

mod 15 7 4 1 1 . . .

a−1; a × a−1 ≡ 1 mod 15 13 4 1 1 . . .

state, it correctly controls whether the multiplication works on

the target register. On the other hand, if the control qubits are

routed incorrectly, the first assertion returns p−value = 0.121 for

an ensemble size of 16. This indicates the control register value is

not correctly toggling the operation of the multiplier, hinting the

bug must be somewhere inside the multiplier implementation.

4.5 Product state postcondition assertions for
composing gates with mirroring

Contingency table analysis is also useful for checking for the third

and final kind of pattern in quantum programs, the correct mir-

roring of operations. The reason this pattern appears in quantum

programs is to allocate and deallocate qubits within a quantum

subroutine, analogous to the allocation and garbage collection of

memory in classical programs. For example, the Shor’s algorithm

in Figure 2 can be seen as allocating the bottom register of qubits

(known as ancillary qubits) in the left half of the algorithm, perform-

ing the modular exponentiation, and then deallocating the bottom

register of qubits in the right half of the algorithm. Product state

assertions validate that the deallocation of these ancillary qubits is

done correctly.

Bug type 5: Incorrect composition of operations usingmir-

roring. In order to garbage collect ancillary qubits in quantum

programs, programmers need to reverse all the operations they

applied to the qubits.

The reason programmers have to do so is because garbage collec-

tion is different in quantum computing compared to that in classical

computing. In classical computing, programmers can simply mark

anymemory as unneeded in order to free it, and that memory would

be rewritten some time later in program execution. But in quantum

computing, qubits can be entangled and therefore cannot be treated

as independent pieces of information. Suppose a program is done

with using the lower register in Figure 2, but they remain entangled

with the upper register qubits. Then anything that happens to the

ancillary qubits, such as measurement, re-initialization, or lapsing

into incoherence, can have unintended effects on the output qubits

in the upper register that the program user does care about.

To prevent these unintended side effects, programmers have to

carefully undo any entanglement they have built up between qubits.

To do this, programmers perform inverse operations in backward

order from the order they originally performed them. This process

is called uncomputation [13, 18, 35]. After uncomputation, ancillary

qubits should be properly untangled from the rest of the program

state, and are truly ready for reuse.

This process of uncomputation can be tricky if done manually.

Take for example the controlled adder subroutine shown in Listing 2.

Uncomputing the addition operation would need an inverse adder
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Table 3: Probability of measuring values of outputs and ancillary qubits of Shor’s algorithm, with incorrect inputs (a−1 = 12

instead of 13 on first iteration). If the ancillary qubits collapse to zero onmeasurement, the algorithm still succeeds, returning

correct outputs of 0, 2, 4, 6 [35, p. 235]. However, the possibility of measuring non-zero for the ancillary qubits indicates a bug.

Probability
Output measurement

0 1 2 3 4 5 6 7

Ancillary

0 1/8 0 1/8 0 1/8 0 1/8 0

qubits

2 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

measurement

7 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

8 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

13 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

counterpart to the controlled adder. The code for the inverse adder

would have each of the iterations in Lines 8 and 9 iterated in reverse

order, and would have the rotation angles used in Lines 13 through

15 negated. Bugs in these inverse operations would impact the qubit

deallocation process.

Defense type 5: Assertion checks for product state post-

conditions. As a counterpart to entanglement assertions, our tool

offers product state assertions to make sure that ancillary qubits

and output qubits are in a product state, meaning they have no

entanglement. This kind of assertion would make sure that code

for the pattern of mirroring operations is correct.

We demonstrate the use of product state assertions also in List-

ing 4. Following the controlled modular multiplier in Line 35, the

program reverses that operation in Line 41. The way the program

invokes the inverse operation in Line 41 is by multiplying by the

modular inverse. In the example here, 7×13 ≡ 1 mod 15, somultiply-

ing by a−1 = 13 inverts the operation of multiplying by a = 7. With

the correct inverse computation, the assert_product statement

in Line 43 returns p−value = 1.0, consistent with no entanglement

between the upper control register and the bottom target register,

indicating the bottom register is properly deallocated.

If on the other hand the program mistakenly multiplies by any

number that is not the modular inverse, for example a−1 = 12, then

the assertion returns p−value = 0.0005 (for an ensemble size of 16)

indicating the two registers are still incorrectly entangled, meaning

the bottom register was not correctly deallocated, which hints to a

bug in the mirrored code.

4.6 Classical postcondition assertions on
deallocated ancillary qubits

Finally, we are ready to run the Shor’s algorithm in an overall

integration test. To run Shor’s algorithm, the programmer has to

feed the algorithm pairs of modular inverse numbers as its input.

For example, Table 2 shows the input pairs for factoring 15, using

7 as a trial divisor. Then, the algorithm should return 0, 2, 4, or 6,

each with equal probability, from measuring the upper register [35,

p. 235]. These numbers would go into a classical post-processing

algorithm to find the factors of 3 × 5 = 15.

Typically, programmers would only measure the upper register

of qubits (Figure 2) that carry program output, and ignore the bot-

tom register of qubits as they are merely ancillary qubits and should

carry no information. However, when a programmer is debugging

a quantum program, these ancillary qubits often carry useful side

channel information that informs the programmer whether the

main outputs are valid. Our tool checks for this information using

classical assertions on the expected values for these deallocated

ancillary qubits.

Bug type 6: Incorrect classical input parameters. The final

bug we study for Shor’s algorithm stems from giving wrong input

parameters to an otherwise correctly written quantum program.

These mistakes can be difficult to debug, even though the bug is

entirely in the classical inputs to the algorithm.

The specific mistake is the programmer supplies wrong pairs of

numbers as modular inverses for the algorithm. Instead of using

(a,a−1) = (7, 13) for the first iteration in Table 2, the programmers

gives a wrong pair of numbers (7, 12). We show our tool can debug

this problem using assertions.

Defense type 6: Assertion checks for classical postcondi-

tions. The outputs of Shor’s algorithm for this incorrect pair of in-

puts is recorded in Table 3. The table is a contingency table showing

the joint probability for the output measurement and the ancillary

qubit measurement. The table shows the ancillary qubits collapse

to a non-zero value with probability 1/2, which is incorrect because

they should always return to their initial value of 0 after appro-

priate uncomputation. This symptom is to be expected because

the incorrect pair of modular inverses fed to the algorithm has

caused incorrect inversion of the multiplication operation inside

the algorithm.

The programmer can use a classical assertion as a postcondition

check on the deallocated ancillary qubits. The program should

assert that the ancillary qubits should return their initial value

of 0. If the postcondition assertion fails, the programmer knows

there was a bug in the deallocation of qubits and therefore the

outputs may be wrong. If the postcondition succeeds, then the

Shor’s factoring algorithm returns valid outputs.

5 QC PROGRAM DEBUGGING ACROSS
ALGORITHM PRIMITIVES

This section shifts focus away from the Shor’s algorithm case study

and presents two additional debugging case studies. The goal is to

understand whether the debugging techniques for Shor’s algorithm

generally apply to other classes of algorithms.
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Table 4: Grover’s amplitude amplification subroutine in two languages, showcasing QC-specific language syntax for reversible

computation (rows 2 & 6) and controlled operations (rows 3 & 5), exposing structure that can guide placing assertions.

Scaffold (C syntax) [17] ProjectQ (Python syntax) [47]

1

int j;

qbit ancilla[n-1]; // scratch register

for(j=0; j<n-1; j++) PrepZ(ancilla[j],0);

# reflection across

# uniform superposition

2

// Hadamard on q

for(j=0; j<n; j++) H(q[j]);

// Phase flip on q = 0...0 so invert q

for(j=0; j<n; j++) X(q[j]);

with Compute(eng):

All(H) | q

All(X) | q

3

// Compute x[n-2] = q[0] and ... and q[n-1]

CCNOT(q[1], q[0], ancilla[0]);

for(j=1; j<n-1; j++)

CCNOT(ancilla[j-1], q[j+1], ancilla[j]);

with Control(eng, q[0:-1]):

4
// Phase flip Z if q=00...0

cZ(ancilla[n-2], q[n-1]);
Z | q[-1]

5

// Undo the local registers

for(j=n-2; j>0; j--)

CCNOT(ancilla[j-1], q[j+1], ancilla[j]);

CCNOT(q[1], q[0], ancilla[0]);

# ProjectQ automatically

# uncomputes control

6

// Restore q

for(j=0; j<n; j++) X(q[j]);

for(j=0; j<n; j++) H(q[j]);

Uncompute(eng)

In the Shor’s case study, we argued how the structure of the

algorithm code guides the placement of assertions. Our methodol-

ogy for debugging the algorithm was to bring up the subroutines

from unit tests to full integration tests. We used assertions to check

for preconditions, intermediate states, and postconditions of sub-

routines. Furthermore the code patterns of how subroutines are

composed further guided what assertions to use. A natural ques-

tion is whether that rigorous methodology is helpful for debugging

other algorithms.

Many different quantum algorithms rely on a handful of QC

algorithm primitives to get speedups relative to classical algo-

rithms [5, 31, 32]. These algorithm primitives are akin to algorithm

kernels in the context of classical algorithms. Each algorithm type

has distinct pitfalls and features that lead to distinct bugs and pos-

sible defenses.

This section covers two more algorithms that use completely

different algorithm primitives. The first is Grover’s database search

algorithm based on the amplitude amplification primitive. The sec-

ond is a quantum chemistry problem that uses quantum operations

to simulate a physical system. This represents a broad selection of

different quantum algorithm primitives.

While we have not covered in this paper some algorithm primi-

tives (such as adiabatic algorithms, approximate optimization al-

gorithms, and much less prominent primitives such as quantum

random walks), the three areas we have covered represent the most

important and well-studied algorithm classes.

5.1 Case study: Grover’s database search

This section uses the Grover’s benchmark to discuss how language

syntax support for reversible computation and controlled opera-

tions guides placement of assertions.

5.1.1 Language support for placement of entanglement assertions.

Higher-level quantum programming language features can help

automatically place assert_entangled and assert_product as-

sertions. We concentrate on the placement of these two assertion

types because they are assertions on the relationship between two

or more quantum variables. As such they are powerful debugging

tools, but they also need the most programmer insight to correctly

place them.

As we discussed in Sections 4.4 and 4.5, entanglement assertions

are closely related to the quantum program patterns of recursion

and mirroring. In the Scaffold language, these patterns are not ex-

plicitly captured by the C-style syntax, but in higher-level quantum

programming languages, such as ProjectQ [47] and Q# [48], these

patterns are essential to the language design. With these language

features, the placement of entanglement assertions becomes as

natural as placing precondition and postcondition assertions.

5.1.2 The Grover’s algorithm for database search. The Grover’s

search algorithm finds an entry that matches search criteria, among

an input data set of size N , with a time cost on the order of
√
N .

That represents a polynomial speedup relative to the linear time

cost in a classical computer [10].

550



Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA

The Grover’s algorithm comprises three parts. First, the input

qubits representing the indices of the matching entries are put in

a state of superposition, akin to querying all entries at once. A

superposition assertion (Section 4.1) helps certify that this algo-

rithm precondition is satisfied. Second, the queries are put through

a subroutine that checks for the search criteria. In our case study,

our criteria is to find the square root of a number in a Galois field

of two elements, a simple abstract algebra setting. Finally in the

critical third step, the amplitude amplification algorithm primitive

amplifies the index that matches the criteria while damping out

those that do not.

5.1.3 Entanglement program patterns in the amplitude amplifica-

tion subroutine. Table 4 shows the reversible computation and con-

trolled operations program patterns coded in two quantum pro-

gramming languages Scaffold [17] and ProjectQ [47]. The ProjectQ

language has syntax support for reversible computation that auto-

matically mirrors and inverts sequences of operations. Likewise,

syntax support for controlled operations automatically allocates

the ancillary qubits needed for controlled operations.

These higher-level language support for these patterns allows au-

tomatic placement of assertions: the controlled operation statement

in rows 3 through 5 indicates that register q should be entangled

in row 4, so it would be the right place to place an entanglement

assertion. Furthermore the compute-uncompute pattern in Rows 2

and 6 hints at a product state assertion at the end of uncomputation.

5.2 Case study: Quantum chemistry

Next, we discuss our experience building up and debugging a sim-

ple quantum chemistry program. Quantum chemistry problems

entail finding properties of molecules from theoretical first princi-

ples [26, 36]. Researchers anticipate these will be the first applica-

tions for QC due to the relatively few number of qubits they need to

surpass classical computer algorithms. Debugging these problems

is distinctively challenging, due to the importance of getting a large

number of classical input parameters all correct, and because of the

dearth of physically meaningful intermediate states we can check

in the course of algorithm execution.

5.2.1 Classical input parameters. A key part of quantum chemistry

programs is in correctly building up a Hamiltonian subroutine that

simulates inter-electron forces. The procedure for doing this was

laid out in detail by Whitfield [54]. We followed this procedure to

create a subroutine for simulating the hydrogen molecule, but we

needed additional cross-validation from several other sources to get

a bug-free subroutine [53]. These resources include raw chemistry

data found in open source repositories for the LIQUi|> framework4.

The final parameters for actual operations on qubits were validated

against a follow-up paper [45] and an implementation in the QISKit

framework5. Because the procedure for preparing these quantum

chemistry models involves many steps and needs domain expertise,

arguably this step in preparing classical input parameters is the

hardest aspect to debug.

Once the Hamiltonian subroutine is built, we can use the model

in a variety of quantum algorithms spanning different primitives.

4https://github.com/StationQ/Liquid/blob/master/Samples/h2_sto3g_4.dat
5https://github.com/Qiskit/aqua/blob/master/test/H2-0.735.json

These include phase estimation (an application of quantum Fourier

transforms) [38], variational quantum eigensolvers [40], and adi-

abatic algorithms [1]. In this case study, we use iterative phase

estimation to find the ground state energy of our H2 model, vali-

dating results published by Lanyon [22].

5.2.2 Assertions on quantum intial values and final states. The cor-

rect preparation of qubit initial values stands out as another chal-

lenging aspect of debugging quantum chemistry QC programs. In-

correct initial values would cause the program to find solutions to

different problems altogether. In this quantum chemistry problem,

the initial values control the locations of the two electrons in H2.

As shown in Table 5, precondition assertions check the qubit assign-

ment for finding the ground energy of H2, while other assignments

lead to results for other energy levels.

The symmetry of H2 allows us to perform a sanity check, to make

sure the Hamiltonian and the iterative phase estimation subroutines

are working correctly. Though there are six ways to assign two

electrons to four locations, there are in fact only four distinct energy

levels, as shown in the experimental data (Table 5). Postcondition

assertions are useful for checking that the two different ways to

obtain E1 (and E2) give the same energy levels. These assertions

validate that the model correctly preserves symmetry.

5.2.3 Assertions on intermediate algorithm progress. Unlike the

other two case studies in this paper, the debugging process for the

quantum chemistry benchmark is coarse-grained. That is because

the Hamiltonian subroutine is a monolithic block of code whose

components do not have obvious expected outputsÐits components

represent pair-wise electron interactions, and do not have inherent

physical meaning. So how do we debug this program? The precon-

ditions in the last subsection make sure the inputs to the algorithm

are correct; the other observable state we have for debugging is to

check the behavior of the algorithm as a whole.

In this quantum chemistry program, we can check for two types

of overall algorithm behavior. One is the solution should converge

to a steady value as finer Trotter time steps (a kind of numerical

approximation) are chosen; a lack of this type of convergence in-

dicates a bug in the Hamiltonian subroutine. The other algorithm

behavior is when we vary the precision of the phase estimation

algorithm, the most significant bits of the measurement output se-

quences should be the sameÐin other words, rounding the output

of a high-precision experiment should yield the same output as a

lower-precision experiment. a lack of this convergence indicates a

bug in the iterative phase estimation subroutine. These checks for

expected algorithm progress also apply to other algorithms.

6 RELATEDWORK

Approaches to writing correct quantum programs range from for-

mal methods to less-formal pragmatic methods, much like in clas-

sical programming. Most of the prior work in quantum program

correctness has been in formal methodsśe.g., using theorem provers

and type checking to verify programs correctly match algorithm

specifications [16, 39, 43, 56, 57]. Such verification techniques con-

sider the correctness problem from a top-down perspective. While
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Table 5: QC calculated energy for H2 (bond length = 73.48 pm) for different electron assignments.

Electron assignments
QC calculated energy

(relative)
Bonding Antibonding

↑ ↓ ↑ ↓

3rd excited state (E3) 0 0 1 1 -0.164

2nd excited state (E2)
0 1 1 0

-0.217
1 0 0 1

1st excited state (E1)
0 1 0 1

-0.244
1 0 1 0

Ground state (G) 1 1 0 0 -0.295

useful, formal methods should not be the only approach to cor-

rect programs; more traditional debugging strategies are also use-

ful. This work considers the possibility of using pragmatic asser-

tion checks to build code bottom-up from exhaustive unit tests up

through integration testing.

Quantum program assertions exist in several quantum program-

ming languages, though not in the same capacity as the statistical

assertions presented in this work. First, the Quipper language [9]

features assertive termination, which allows the programmer to

annotate known program state, in order to drive compiler optimiza-

tions. Their use relies on the programmer to write correct code

and assertions, and cannot be used as postcondition checks. Sec-

ond, the Q# programming language [48] allows programmers to

write assertions on classical, integer states. These assertions are

then checked during the simulation of the quantum programs. This

work extends that set of assertions with assertions on superposition

and entanglement states.

The set of quantum states considered in these assertions, namely

classical, superposition, and entangled states, are a subset of pos-

sible quantum states. In the general case we need quantum phase

estimation, quantum state tomography, and quantum process to-

mography to be able to examine general quantum states [35]. How-

ever, those processes are extremely costly and cannot be used as

efficient assertion checks.

7 CONCLUSION

For the first time, we have access to program benchmarks for several

major areas of quantum algorithms, along with input datasets and

outputs that are detailed enough to permit detailed debugging and

cross-validation. Using our experience in building up and debugging

these programs, we presented in this paper a strategy for deploying

and checking quantum program assertions based on statistical tests.

Drawing on the structure of quantum programs, we point to where

and how program bugs may arise, and point to how the presented

assertions can catch them.
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